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ABSTRACT 

 

Hu, Huan. M.S.M.E., Purdue University, August 2012. Response Control of Seismically 

Excited Buildings: Application of Viscous Damping and Negative Stiffness Control 

Algorithm. Major Professor: Shirley J. Dyke, School of Mechanical Engineering. 

 

This thesis focuses on the application of the viscous damping and negative stiffness 

(VDNS) algorithm to the seismic response control of buildings. It provides an effective 

option for the semi-active control of the earthquake excited buildings. The proposed 

VDNS control algorithm is a simple strategy, as compared to those control strategies 

requiring the designers to have deep understanding in modern control theory. It reduces 

the vibrations of the building by increasing the damping of the structure. The algorithm 

produces a control force that only requires measurements at the location of the control 

device. Therefore, the VDNS controller can be designed decentralized. The VDNS 

algorithm is evaluated on the numerical models of two buildings: a six-story building and 

a 20-story benchmark building. Active and semi-active control systems are designed 

based on the VDNS algorithm, to demonstrate its applications in both active and semi-

active control. It is observed to be effective in reducing the responses of both buildings 

under earthquakes significantly.  
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CHAPTER 1. INTRODUCTION 

 

 

Buildings around the world are subject to various loading conditions. During the design 

of a building, the designer must estimate the loads related to the building itself, for 

example the static forces due to connections. However, the building would also possibly 

be affected by external excitations, such as earthquakes. These disturbances induce 

undesired vibrations in the building, make people uncomfortable, cause damage to the 

structure and the equipment, and reduce the life of the building. Because the disturbances 

are dynamic in nature and highly uncertain with respect to magnitude and arrival times, 

the uncertainties make the design challenging at times. Based on the modern control 

theory, structural control has emerged to mitigate the negative effects that the external 

disturbances impose on the structures. Proposed originally by Yao [1], structural control 

has been investigated and shown great potential for reducing vibrations in various civil 

structures under dynamic loading. As compared to the traditional methods, for example 

the bracing systems, the structural control is more adaptable. Traditional methods are 

designed to remain the building in the elastic range. When the braces are selected far 

stronger than required, it might induce big accelerations in strong earthquakes. Serious 

efforts have been undertaken in the last three decades to develop the structural control 

concept into a workable technology. 

 

1.1. Structural Control 

 

The mitigation of structural vibrations can be done by a variety of methods, such as 

modifying the masses, rigidities, damping, or shape, and by providing passive or active 

resistant forces. Therefore, structural control is usually classified by its method, or the 

type of device used to impart the control force. The three classes of structural control 
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devices include passive, active, and semi-active, which correspond to passive, active and 

semi-active control respectively [2]. 

 

1.1.1. Passive Control 

 

A passive control device is a device that produces a control force at the location of the 

device by using the motion of the structure, to limit the effects of seismic excitation. 

Because the system is purely reactive, the passive control device can only dissipate 

energy from the structure. This characteristic allows passive control to be considered as 

bounded input-bounded output (BIBO) stable. Furthermore, a passive control device does 

not require an external power supply. Passive control devices include auxiliary dampers, 

tuned mass dampers (TMD), and base isolation systems [3][4]. 

 

Auxiliary dampers have been successfully employed for flexible structures such as tall 

building, particularly those susceptible to strong winds. The damping devices, either 

viscous, viscoelastic, or plastic, utilize the flow of fluid to produce the resistant force to 

the structure, and dissipate energy. The World Trade Center in New York City and 

several buildings in Seattle and in California are employed with the auxiliary dampers 

[2][5]. 

 

A tuned mass damper is a classical dynamic vibration absorber, consisting of a mass on 

the order of 1% of the mass of the total structure, located at the top of the building and 

connected through a passive spring and damper. While this is a particularly effective 

strategy for stationary, narrow band motions, it is less for broadband excitations such as 

earthquakes, where transient effects are dominant [5]. However, the designer has several 

parameters, including mass ratio and absorber damping ratio, with which the bandwidth 

and attenuation capability of the device can be controlled. One of the world’s tallest 

structures, the Taipei 101, employs a tuned mass damper to protect against the 

seismically active region of Taiwan [2][5]. Other examples are the John Hancock Tower 

in Boston and the Citicorp building in New York City [2][5]. 
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In a structure with a base isolation system [6], the typical fixed-base design is replaced 

with an isolation system, such as elastomeric (rubber) bearings, between the base of the 

building and the ground. The effect of the base isolation system is to be stiff under 

vertical loads and at the same time flexible under lateral loads. Therefore, the result is 

that the base isolation system will reduce forces transmitted to the structure. 

 

1.1.2. Active Control 

 

One problem of passive control system is that the resistant forces provided by the passive 

control devices are not able to be controlled in a specified way. In order to compensate 

for the lack of adaptability of passive control devices, active control devices have been 

investigated and implemented. In an active control system, actuators are used to generate 

control forces to the structure. The force provided by the actuator can be controlled by 

adjusting the electrical input to the actuator to reduce the effects of external disturbances 

on the structure. Feedback measurements of the excitation and/or structural responses are 

used by an active control system to develop the required control forces. The structural 

responses are measured using sensors mounted at certain locations on the structure. 

Active control devices include active bracing systems, active mass damper (AMD) 

systems, and active base isolation systems [4]. Furthermore, a control algorithm uses the 

feedback measurements to determine the appropriate control forces to be applied to the 

structure. Control algorithms are being continually developed and improved to provide 

the most effective active control schemes.  

 

Spencer et al. [7] provided a benchmark on a three-story building employing an active 

mass driver, and develop specifications and guidelines governing both performance and 

implementability for the evaluation of active structural control algorithms or the 

comparison between different control systems. The H2/LQG control law has been shown 

to be an effective control algorithm for active device for seismically excited structures [8]. 

Dyke et al. [9][10] investigated the use of acceleration feedback algorithms as opposed to 



4 

 

direct measurements of displacements and velocities which are impractical for full scale 

implementations. 

 

Active control systems require external power supply to effect the control action. This 

makes such systems vulnerable to power failure, which is always a possibility during a 

strong earthquake. In addition, in contrast to a passive control device, an active control 

device can add energy to the structural system, thereby aggravating the effects of ground 

excitations. 

 

1.1.3. Semi-active Control 

 

A semi-active control device is a combination of passive and active control devices. On 

one hand, like passive control devices, semi-active control devices provide forces to the 

structure as a result of the response of the structure and would not add energy to the 

structure. Therefore, the semi-active control system is said to be reliable. On the other 

hand, feedback measurements are used by a controller to produce an appropriate signal 

for the semi-active control device, so the semi-active control system is adaptable, like the 

active control system. Furthermore, only a small external power source is required for the 

operation of a semi-active control device. Another attractive feature of semi-active 

control systems is that in the event of a power outage, the control system will revert to a 

passive system. As with active control, the performance of semi-active control is reliant 

on the ability of control algorithms implemented in the system. Examples of semi-active 

devices include variable orifice dampers, variable friction dampers, and 

magnetorheological dampers. These semi-active devices are implemented in the same 

manner as active control devices. 

 

One challenge in the application of semi-active technology is in developing the nonlinear 

control algorithms that are appropriate for implementation in the structures. A number of 

control algorithms have been developed for semi-active systems. Leitmann designed a 

semi-active controller based on the Lyapunov stability theory [11]. The goal of this 
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algorithm is to reduce the responses by minimizing the rate of change of a Lyapunov 

function. McClamroch et al. developed a decentralized bangbang controller using a 

similar approach [12]. This control algorithm acts to minimize the total energy in the 

structure. Clipped-optimal controllers have also been proposed and implemented for 

semi-active systems. Jansen et al. [13] compared the performance of a number of semi-

active control algorithms for use with multiple MR dampers to control a seismically 

excited building structure. It has been demonstrated that the performance of semi-active 

systems is highly dependent on the choice of control algorithm [18]. 

 

1.2. Overview of Thesis 

 

This thesis focuses on the application of the viscous damping and negative stiffness 

(VDNS) control algorithm to the seismic response control of civil buildings. It provides 

an effective option for the semi-active control of the earthquake excited buildings. The 

H2/LQG control method and pseudo negative stiffness (PNS) algorithm are discussed in 

Chapter 2. The modeling of MR damper and the original and modified clipping algorithm 

for the semi-active control systems will be provided in Chapter 2 as well. Chapter 3 

proposes the VDNS control algorithm which is designed to increase the damping of 

structure, and presents how this algorithm works on a six-story building. In Chapter 4, the 

VDNS algorithm is applied to the linear full scale 20-story benchmark building model. 

Two control systems are designed, and the results are discussed in this chapter. Finally, 

Chapter 5 summarizes the research and provides recommendations for future 

investigations. 
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CHAPTER 2. LITERATURE REVIEW 

 

 

Control devices and strategies are continually being developed and studied to address 

different structural control issues and improve the performance of the control systems. In 

this chapter, the characteristics and modeling of a promising semi-active device, MR 

damper, are provided. The MR damper is used as the control device in the semi-active 

control systems in the later chapters in this thesis. The H2/LQG method and clipped-

optimal controller are widely used control strategies for active and semi-active control 

systems respectively, and are discussed in detail in this chapter. A control algorithm 

using the pseudo negative stiffness (PNS) hysteretic loop for the seismic response control 

of cable-stayed bridges is also provided. 

 

2.1. Bouc-Wen MR Damper Model 

 

A particular semi-active device that has shown to be quite effective is the magneto-

rheological (MR) damper. This device is a damper that contains a special fluid that has 

the reversible capacity to change from a Newtonian fluid to a semi-solid state that has a 

yield stress associated with it in a matter of milliseconds. The yield stress of the MR fluid 

is limited by a magnetic saturation, and is 50~100 kPa for an applied magnetic field of 

150 ~250 kA/m. The fluid itself consists of some carrier medium such as hydrocarbon oil 

or silicone oil with micron-sized magnetically polarized particles dispersed in them. 

When this fluid is exposed to a magnetic field, the particles bond together, providing 

additional resistance due to the increased yield stress. The resultant control forces the 

dampers produce are dependent on the strength of the magnetic field applied.  

 

Because the control forces are adjusted by the magnetic field and do not require a 

mechanical valve, the MR device displays high reliability. To produce these magnetic 
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fields, only 1 ~ 3 Amps and 20 ~ 60 Volts are usually needed. Thus, only a small power 

source, such as a battery, is required for the MR damper. Other advantages of MR 

damper are: 1. the performance is stable in a broad temperature range, e.g., MR fluid 

operates at temperature between -40 
o
C and 150

 o
C; 2. the response time is a few 

milliseconds; 3. the performance is not sensitive to contamination during manufacturing 

the MR damper; 4. it is relatively inexpensive to manufacture and maintain. The MR 

damper has also been experimentally validated for various types and capacities [23]. 

 

Accurate modeling of the MR damper’s mechanical properties is necessary for predicting 

the behavior of the controlled system. Although, many models for the MR damper exist, 

this study employs the Bouc-Wen model. A schematic of a simple mechanical MR 

damper using the Bouc-Wen hysteresis model is shown in Figure 2.1. This particular 

model was developed and shown to accurately predict the behavior of the controlled 

system over a wide range of inputs in various experiments [19][20]. 

 

 

Figure 2.1: Bouc-Wen Model of MR Damper. 

 

The equations governing the force produced by this device model are 

 

 0x zf c    (2.1) 

 

 
1n n

z x z z x z Ax 

    (2.2) 
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where x is the displacement of the device, and z is an evolutionary variable that accounts 

for the history dependence of the response. By adjusting the parameters of the model  , 

 , n, and A, the linearity in the unloading and smoothness of the transition from the pre-

yield to the post-yield region can be controlled. The functional dependence of the device 

parameters on the command input u is modeled as 

 

 a bu     (2.3) 

 

 0 0 0 .a bc c c u   (2.4) 

 

The current driver circuit of the MR damper also introduces dynamics into the system. 

These dynamics are typically considered to be a first order time lag in the response of the 

devices to changes in the command input. These dynamics are accounted for with the 

first order filter on the control input given by 

 

 ( )u u v    (2.5) 

 

where v is the command voltage applied to the control circuit. 

 

2.2. H2/LQG Method 

 

Consider a seismically excited structure controlled with n control devices. Assuming that 

the forces provided by the control devices are adequate to keep the response of the 

primary structure from exiting the linear region, the equations of motion can be written as 

 

 
gx     Mx Cx Kx f M  (2.6) 
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where M , C , and K  are the mass, damping and stiffness matrices of the structure,   is a 

vector of the relative displacements of the structure,   is a matrix determined by the 

placement of the control devices in the structure, 
1 2, ,[ ], T

nf f ff
 
is the vector of the 

measured control force provided by the n control devices,   is a column vector of ones, 

and 
gx  is a one-dimensional ground acceleration. 

 

The equations expressed above can be written in state-space form as 

 

 
s s gx x Ax Bf E  (2.7) 

 

 
mm gm m ms x  y C x D f F v  (2.8) 

 

 
z s z z gx  z C x D f F  (2.9) 

 

where sx  is the state vector, my  is the vector of measured outputs,   is the regulated 

output vector, mv  is a vector of measurement noises, and A, B, E, Cm, Dm, Fm, Cz, Dz, 

and Fz are matrices of appropriate dimension. 

 

An H2/LQG control law has shown to be effective for structures affected by earthquake 

excitation [19], even in the case of nonlinear behavior [27][28]. In this approach, 
gx  is 

taken as a stationary white noise, and an infinite horizon performance is chosen that 

weights the regulated output vector, z, i.e., 

 

  
0

( ) ( )
1

lim T T

z z z zs sJ dt



 

 
  


  


 C x D u Q C x D u u Ru  (2.10) 

 

where R is an identity matrix and the elements of the weighting matrix Q are selected to 

appropriately weight the regulated outputs. Further, the measurement noise is assumed to 
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be identically distributed, statistically independent Gaussian white noise processes, and 

/ 25
g g i ix x v vS S  . 

 

The separation principle allows the control and estimation problems to be considered 

separately, yielding a controller of the form 

 

 ˆ. u Kx  (2.11) 

 

The matrix K is the optimal gain matrix for the Linear Quadratic Regulator (LQR) with 

full state feedback which is expressed in state-space form as 

 

 
1( )T K R N B P  (2.12) 

 

where P is the solution of the algebraic Riccati equation given by 

 

 
1T T   PA A P PBR B P Q 0  (2.13) 

 

and 

 

 
1T T

z z

 Q C QC NR N  (2.14) 

 

 T

z zN C QD  (2.15) 

 

 T

z z R R D QD  (2.16) 

 

 
1 .T A A BR N  (2.17) 

 

The solutions are detailed in [4][7]. The MATLAB routine lqry.m within the control 

toolbox can be used to calculate K. 
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In most real world problems, all the states are not available for measurement. Therefore, 

observer design techniques are developed to estimate the full state vector from only 

partial information developed from a measured outputs that capture enough information 

regarding the system dynamics. The vector x̂  is the estimated state vector using the 

Kalman filter 

 

 ˆ ˆ ˆ( ).m m m    x Ax Bu L y C x D u  (2.18) 

 

The matrix L is the observer gain matrix for the Linear Quadratic Gaussian (LQG) where 

 

 1 ,( )
T

T

mm   L R F E C S  (2.19) 

 

where S is the solution of the algebraic Riccati equation given by 

 

 
T   SA A S SGS H 0  (2.20) 

 

and 

 

 1 )(T T T

m mA A C R F E  (2.21) 

 

 1T

m m

G C R C  (2.22) 

 

 2 1T T T

m m   H EE EF R F E  (2.23) 

 

 .T

m m R I F F  (2.24) 

 

The MATLAB routine lqew.m within the control toolbox can be used to calculate L. 
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The control force provided by each active control device is given by 

 

 ( ) ( )i if t u t  (2.25) 

 

where ( )iu t  is the  th command force determined by the control algorithm. In other 

words, the measured forces for the active control devices are the desired forces from the 

control algorithm. 

 

2.3. Clipping Algorithm 

 

Because the force generated in the MR damper is dependent on the local responses of the 

structural system, the desired control force dif  cannot always be produced by the MR 

damper. Only the control voltage iV  can be directly controlled to increase or decrease the 

force produced by the device. Thus, a force feedback loop is incorporated to induce the 

MR damper to generate approximately the desired control force dif . 

 

To induce the MR damper to generate approximately the desired control force, a clipping 

algorithm is needed for the MR damper to track the desired control force. In the original 

clipped optimal control algorithm [19][20], H2/LQG controllers described in Section 2.2 

are first employed to determine the desired optimal control force. Then the clipping 

algorithm described following is used to select the command signal for the MR damper. 

When the ith MR damper is providing the desired control force (i.e., i dif f ), the voltage 

applied to the damper should remain at the present level. If the magnitude of the force 

produced by the damper is smaller than the magnitude of the desired control force and the 

two forces have the same sign, the voltage applied to the current driver is increased to the 

maximum level so as to increase the force produced by the damper to track the desired 

control force. Otherwise, the commanded voltage is set to zero. The algorithm for 
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selecting the command signal for the ith MR damper is graphically represented in Figure 

2.2 and can be stated as 

 

  { }i max i idiv V H f f f   (2.26) 

 

where maxV  is the maximum voltage to the current driver, and ( )H   is the Heaviside step 

function. 

 

 

Figure 2.2: Graphical Representation of Clipped Optimal Control Algorithm [27]. 

 

In the original clipping algorithm, command voltage takes on values of either zero or the 

maximum value. The controller based on this algorithm would be classified as a bang-

bang controller. In some situations, large changes in the forces applied to the structure 

may result in high local acceleration values. A modified version of this clipping 

algorithm was later proposed by Yoshida [27][28]. In this variation, the voltage can be 

any value between 0 and maxV . The control voltage, denoted ciV , is determined using a 

linear relationship between the applied voltage and the maximum force of MR. When the 

desired control force exceeds the maximum force of the MR damper, the maximum 

voltage is applied. The modified clipping is graphically represented in Figure 2.3 and can 

be stated as 
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  { }ci ii i idv V H f f f   (2.27) 

 

where 

 

 
max

max max

di di

c

di

i

i

f for f f
V

V for f f

 
 


 (2.28) 

 

where maxf  is the maximum force produced by the control device and i  is the 

coefficient relating the voltage to the force. 

 

 

Figure 2.3: Graphical Representation of Modified Clipped-Optimal Control [27]. 

 

2.4. Pseudo Negative Stiffness Algorithm 

 

Iemura et al. proposed a pseudo negative stiffness (PNS) algorithm for the seismic 

response control of cable-stayed bridges [29][30][31][32]. The strategy is to create a 

pseudo negative stiffness hysteretic loop. The combination of pseudo negative stiffness 

hysteretic loop plus connecting stiffness produces an artificial hysteretic loop that 

approaches rigid-perfectly plastic force-deformation characteristics which has large 

damping ratio. 
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The point is that the damper is usually set parallel to an existing member that has some 

stiffness. Viscous dampers, for example, have elliptical hysteretic loops (Figure 2.4b) 

when excited by sinusoidal excitations. Since the force transferred to other members is 

the summation of the damper and existing-member stiffness forces, then it is interesting 

to see Figure 2.4c, which is the summation of existing-member stiffness force and 

damper force. It is clear that the maximum forces in Figure 2.4c are larger than the 

maximum existing-member forces in Figure 2.4a. 

 

On the other hand, by producing a pseudo negative stiffness (PNS) hysteretic loop 

(Figure 2.4e), the maximum force in Figure 2.4f is kept the same as the existing-member 

stiffness force (Figure 2.4d) while keeping large area inside the hysteretic loop. 

 

 

Figure 2.4: Total Force at Bearing Location [31]. 

 

An algorithm that can approach the hysteretic loop was proposed by Iemura et al. [29] as 

in Eq. (2.29) 

 

 d d df k u c u   (2.29) 
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where dk  and dc  are selected negative stiffness and selected damping coefficient, 

respectively. The algorithm is practical because relative displacement and velocity 

sensors are located only at the variable dampers. The simple algorithm and relatively few 

sensors reduce the source of errors and uncertainties. 

 

In order to study the effectiveness of this algorithm for seismic response control of cable-

stayed bridges, applications of pseudo negative stiffness damper and linear viscous 

damper to the Tempozan bridge in Japan [29] and to the benchmark cable-stayed bridge 

in the US [30] were carried out using numerical simulations under several earthquake 

excitations. The results show that the pseudo negative stiffness damper reduces seismic 

responses better than those by passively viscous damper. The variable-orifice oil damper 

was used as the pseudo negative stiffness damper. By using this device, the opening ratio 

of the flow control can be changed by electric power based on a signal from the control 

PC. By changing it, the quantity of flow through the valve can be adjusted. This series of 

mechanism enables the variable damper to generate the force required as closely as 

possible. 

 

To choose the values for the parameters of the pseudo negative stiffness damper, the 

cable-stayed bridge is simplified to a mass-spring system with only one mass as shown in 

Figure 2.5. The negative stiffness value dk  in Eq. (2.29) to control the variable damper is 

chosen as the negative value of the existing stiffness which is parallel to the damper. The 

damping coefficient dc  is selected by examining the effects of different values on the 

responses and induced forces of the bridge. 
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Figure 2.5: Simplified Model of the Cable-Stayed Bridge [29]. 

 

Iemura et al. also investigated the hysteretic loops produced by the LQR control force for 

seismic response, and reproduced the hysteretic loops with the proposed pseudo negative 

stiffness algorithm [32]. The results show that the proposed method is capable of 

reducing seismic response better than the viscous damper case and is similar to the LQR 

case. It needs only displacement response at the device location, and therefore fewer 

sensors are needed than for the LQR algorithm.  
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CHAPTER 3. VISCOUS DAMPING AND NEGATIVE STIFFNESS CONTROL 

ALGORITHM 

 

 

In this chapter, a simple algorithm, viscous damping and negative stiffness (VDNS) 

algorithm, is provided for the response control of seismically excited buildings. This 

method was proposed by Weber et al. [36] for the mitigation of stay cable vibrations. The 

control force is designed to increase the damping of the structure, and it has the same 

form as that of the PNS algorithm. For a building usually with multiple degrees of 

freedom, it is convenient to study its modal model. The effects of the structural damping 

on the response of the structure are discussed in this chapter, and the first modal damping 

of the structure is used to determine the values of control parameters. The procedure of 

designing VDNS controller is demonstrated on a six-story building. 

 

3.1. The Modal Model of Structure 

 

Modes are inherent properties of a structure, and are determined by the material 

properties (mass, damping, and stiffness), and boundary conditions of the structure. Each 

mode is defined by a natural (modal or resonant) frequency, modal damping, and a mode 

shape (i.e. the so-called “modal parameters”). If either the material properties or the 

boundary conditions of a structure change, its modes will change. For instance, if mass is 

added to a structure, it will vibrate differently. To understand this, we will make use of 

the concept of single and multiple-degree-of-freedom systems. 

 

3.1.1. Single Degree of Freedom 

 

A single-degree-of-freedom (SDOF) system (see Figure 3.1 where the mass   can only 

move along the vertical x-axis) is described by the following equation 
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 ( ) ( ) ( ) ( )x t cx tm kx t f t    (3.1) 

 

with m the mass, c the damping coefficient, and k the stiffness. The variable      stands 

for the position of the mass   with respect to its equilibrium point, i.e. the position of the 

mass when ( ) 0f t  . Transforming Eq. (3.1) to the Laplace domain (assuming zero 

initial conditions) yields 

 

 ( ) ( ) ( )Z s X s F s  (3.2) 

 

where ( )Z s  is the dynamic stiffness 

 

 
2( ) .Z s ms cs k    (3.3) 

 

The transfer function ( )H s  between displacement and force, ( ) ( ) ( )X s H s F s , equals 

the inverse of the dynamic stiffness 

 

 
2

1
( ) .H s

ms cs k


 
 (3.4) 

 

 

Figure 3.1: SDOF System. 
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The roots of the denominator of the transfer function, i.e. 
2( )d s ms cs k   , are the 

poles of the system. In most structures, the damping coefficient c is usually very small 

resulting in a complex conjugate pole pair 

 

 .di      (3.5) 

 

d  is the damped natural frequency, /n k m    is the (undamped) natural 

frequency, and / 2 /nc m     is the damping ratio ( 21nd    ). If, for 

instance, a mass m  is added to the original mass m of the structure, its natural 

frequency decreases to  /n k m m   . If 0c  , the system is not damped and the 

poles becomes purely imaginary, ni   . 

 

The Frequency Response Function (FRF), denoted  H  , is obtained by replacing the 

Laplace variable   in Eq. (3.4) by i , resulting in 

 

 
2 2

1 1
( ) .

)(k
H

m kic m ic


   
 
   

 (3.6) 

 

Clearly, if 0c  , then  H   goes to infinity as   approaches to n  (See Figure 3.1). 

 

Although very few practical structures could realistically be modeled by a single-degree-

of-freedom (SDOF) system, the properties of such a system are important because those 

of a more complex multiple-degree-of-freedom (MDOF) system can always be 

represented as the linear superposition of a number of SDOF characteristics (when the 

system is linear time-invariant). 

 

3.1.2. Multiple Degrees of Freedom 
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Multiple-degree-of-freedom (MDOF) systems are described by the following equation 

 

 ( ) ( ) ( ) ( ).t t t t  Mx Cx Kx f  (3.7) 

 

In Figure 3.2, the different matrices are defined for a 2-DOF system with both DOF along 

the vertical x-axis. 

 

 

Figure 3.2: 2-DOF System. 

 

Transforming Eq. (3.7) to the Laplace domain (assuming zero initial conditions) yields 

 

 ( ) ( ) ( )s s sZ X F  (3.8) 

 

where ( )sZ  is the dynamic stiffness matrix 

 

 
2( ) .s s s  Z M C K  (3.9) 

 

The transfer function matrix ( )sH  between displacement and force vectors, 

( ) ( ) ( )s s sX H F , equals the inverse of the dynamic stiffness matrix 

 

 
2

1 ( )
( )

( )

s
s s

d s



     
N

H s M C K  (3.10) 

with the numerator polynomial matrix ( )sN  given by 
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2( ) ( )s s s  N adj M C K  (3.11) 

 

and the common denominator polynomial ( )d s , also known as the characteristic 

polynomial, 

 

 
2( ) det( ).d s s s  M C K  (3.12) 

 

When the damping is small, the roots of the characteristic polynomial ( )d s  are complex 

conjugate pole pairs, m  and 
*

m
 , 1, , mm N , with mN  the number of modes of the 

system. The transfer function can be rewritten in a pole-residue form, i.e. the so-called 

“modal” model 

 

 
*

*
1

( ) .
m

m

N

m

m m m

s
s s 

 
 


R R

H  (3.13) 

 

The residue matrices mR , 1, , mm N  are defined by 

 

 )( )lim ( .
m

m m
s

s s





R H  (3.14) 

 

It can be shown that the matrix mR  is of rank one meaning that mR  can be decomposed 

as 

 

  

(1)

(2)
(1) (2) ( )

( )

m

mT

m m m m m m m

m m

N

N




  



 
 
 

    
 
 





R  (3.15) 
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with m  a vector representing the “mode shape” of mode m. From Eq. (3.13), one 

concludes that the transfer function matrix of a linear time-invariant MDOF system with 

mN  DOFs is the sum of mN  SDOF transfer functions (“modal superposition”) and that 

the full transfer function matrix is completely characterized by the modal parameters, i.e. 

the poles 
,m m d mi      and the mode shape vectors m , 1, , mm N . 

 

Taking the inverse Laplace transform of Eq. (3.13) yields the Impulse Response Function 

(IRF) 

 

 
*

*

1

( )
m

m m

N
t

m m

t

m

et e
 



 h R R  (3.16) 

 

which consists of a sum of complex exponential functions. 

 

Eq. (3.7) can be written as  

 

 ( )( ) ()s sx tt t x A Bf  (3.17) 

 

where sx  is the state vector, A and B are the state matrix and input matrix respectively, 

given by 

 

 
1 1 

 
  

  

0 I
A

M K M C
 (3.18) 

 

 
1

.


 
  
 

0
B

M
 (3.19) 

 

The poles 
,m m d mi      and the mode shape vectors m  ( 1, , mm N ) of the system 

can be determined by calculating the eigenvalues and eigenvectors of the state matrix A. 
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The MATLAB routine eig.m within the control toolbox can be used to calculate the 

eigenvalues and eigenvectors. 

 

3.2. Structural Damping 

 

Iemura et al. have shown that the pseudo negative stiffness (PNS) hysteretic loops can be 

produced by adding negative stiffness force to the viscous damping force [29][30][31]. 

By producing such PNS hysteretic loops, the maximum force is kept the same with 

existing-member stiffness forces while keeping large area inside the hysteretic loops. The 

effectiveness of this algorithm has been evaluated on a typical cable-stayed bridge in 

Japan and to the benchmark cable-stayed bridge in the US using numerical simulations 

under several earthquake excitations. The results show that the algorithm reduces 

displacement and keeps the base shear small in both cable-stayed bridges. Rather than 

considering the PNS hysteretic loops, the effect of the negative stiffness force on the 

structural damping is investigated in the thesis. 

 

3.2.1. Dynamic Magnification Factors 

 

Letting 0( ) sin( )f t f t , where 0f  and   are, respectively, the amplitude and the 

driving frequency of the forcing function; from Eq. (3.6), the steady-state response 

amplitude 0x  is given by 

 

 

   

0 0
0

2 2 222 2 2

2

/

1

/
.

2
2n n

n n

f m f k
x

     


 




 

   
   

   

 (3.20) 

 

Denoting the term multiplying 0 /f k  on the right side of Eq. (3.20) by d  results in 
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

 (3.21) 

 

Here, r is the frequency ratio with 

 

 .
n

r



  (3.22) 

 

Therefore, the amplitude 0x  can be rewritten as  

 

 0
0 .d

f
x

k
  (3.23) 

 

In Eq. (3.23), the term 0 /f k  can be seen as a static displacement. That is, the amplitude 

of the dynamic displacement ( )x t , namely, 0x , can be seen as the static displacement 

times a special factor d , which is referred to as the dynamic magnification factor for the 

displacement [38]. 

 

Figure 3.3 shows a set of curves of the dynamic magnification factors of displacement 

with different damping ratios. Figure 3.3 shows that the dynamics magnification factors 

d  can be either larger or smaller than unity. When the frequency ratio is close to 1, the 

underdamped system will always have the value of d  greater than unity. This 

phenomenon is defined as resonance. The smaller the damping, the larger the value of d  

found when resonance occurs. Pure resonant behavior occurs for an ideal system with 

zero damping; in which case, the response becomes limitless. When the damping ratio 

becomes larger than 0.707, the value of d  will never be larger than unity. Furthermore, 

when the damping ratio is greater than 1, the system is overdamped. 
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Figure 3.3: Dynamic Magnification Factor for Displacement. 

 

The acceleration amplitude of steady-state response, denoted by 0a , can be written as  
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 (3.24) 

 

The terms in the bracket on the right side of Eq. (3.24) can be denoted by a , as  
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Here a  is referred to as the dynamic magnification for the acceleration, which is shown 

in Figure 3.4. 

 

 

Figure 3.4: Dynamic Magnification Factor for Acceleration. 

 

3.2.2. Response Reduction due to Increase of Damping 

 

By examining both the dynamic magnification factors of the displacement and the 

acceleration, it is observed that when the damping ratio is increased, the vibration 

response can be reduced. 

 

In Figure 3.5, several curves are plotted to compare the response reduction with the 

increased damping ratio at different frequency points. These curves, denoted by ( )R  , 

are percentage reduction, namely, the values of the Y-axis are 
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and the X-axis is 100 . In Figure 3.5, the frequency ratios are chosen to be 1.5, 1.2, 1.1, 

1.05, and 1. The corresponding curves are plotted and marked with these frequency ratios. 

It can be proven that the reduction curves of r = 1.5 and r = 1/1.5 are identical, and so on. 

In the resonant region around r = 1, the percentage reduction increases rapidly as the 

damping ratio increases. It is realized that increasing the damping ratio to reduce the 

displacement can be more effective in the resonant region. 

 

 

Figure 3.5: Reduction of Dynamic Magnification Factor. 

 

3.3. VDNS Control Strategy 

 

In this section, the procedure of the VDNS algorithm is provided. Consider a seismically 

excited structure controlled with n control devices. Assuming that the forces provided by 

the control devices are adequate to keep the response of the primary structure from 

exiting the linear region, the equations of motion can be written as 

 

 
gx     Mx Cx Kx f M  (3.27) 
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where   is a vector of the relative displacements of the floors of the structure,
gx  is a one-

dimensional ground acceleration, 
1 2, ,[ ], T

nf f ff  is the vector of measured control 

forces,   is a column vector of ones, and   is a vector determined by the placement of 

the control device in the structure. This equation can be written in state-space form as 

 

 
s s gx x Ax Bf E  (3.28) 

 

 mm gm m ms x  y C x D f F v  (3.29) 

 

 z s zz C x D f  (3.30) 

 

where my  is the vector corresponding to measured outputs, mv  is a measurement noise 

vector, and A, B, E, Cm, Dm, and Fm are matrices of appropriate dimension. z is a vector 

of the horizontal displacements and velocities of those floors with control devices 

implemented relative to the ground. 

 

The Viscous Damping and Negative Stiffness (VDNS) algorithm is to add the negative 

stiffness force to the viscous damping force, which calculates the desired control forces 

of the control devices based on the displacement and velocity of the devices, i.e., the 

desired control force of a control device dif  is given as 

 

 di di i di if k d c v   (3.31) 

 

where id  and iv are the relative displacement and velocity across the ith control device, 

dik  is the negative stiffness coefficient, which has to be negative, and dic  is the damping 

coefficient, which has to be positive. Let all desired control forces have the same value of 

dk  and dc , therefore, the vector of control force f can be written as  
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where d d
   T K C  consists of the negative stiffness matrix dK and the control 

damping matrix dC , and  

 

 

0 0 0

0 0

00 0

0 0

d

d d

d

d

d d

k

k k

k

k k

 
 

 
 
 
 
  

K  (3.33) 

 

 

0 0 0

0 0

.

00 0

0 0

d

d d

d

d

d d

c

c c

c

c c

 
 

 
 
 
 
  

C  (3.34) 

 

Using Eq. (4.5) in Eq. (4.7), 

 

  .z s s  f Tz T C x D f  (3.35) 

 

Therefore, 

 

  
1

.z z s


 f I TD TC x  (3.36) 

 

Using Eq. (4.11) in Eq. (4.2), the controlled system becomes 
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s c s c gx x A x E  (3.37) 

 

where  

 

  
1

.c z z


 A A B I TD TC  (3.38) 

 

In most cases, z D 0 . The poles 
,m m d mi      of the controlled system can be 

determined by calculating the eigenvalues of the state matrix Ac. To ensure that the 

controlled system is stable, all eigenvalues of Ac must have negative real parts, i.e., 

0m  . The damping ratio of the first mode of the controlled structure 1  can be 

calculated as 

 

 1 1
1

2 2
,1 1 ,1

.
n d

 


  
   (3.39) 

 

Finally, the control parameters kd and cd are selected to increase the value of 1 . 

 

3.4. Numerical Example: Response Control of Six-Story Building 

 

An example of how the VDNS algorithm works is illustrated on the numerical model of a 

six-story building that is controlled with four MR dampers. This building has been 

studied by Jansen et al. [13]. Two devices are rigidly connected between the ground and 

the first floor, and two devices are rigidly connected between the first and second floors, 

as shown in Figure 3.6. Each MR damper is capable of producing a force equal to 1.8% 

the weight of the entire structure, and the maximum voltage input to the MR devices is 

     = 5 V. The governing equations can be written in the form of Eq. (3.27) by defining 

the mass of each floor,   , as 0.227 N/(cm/sec2) (0.129 1b/(in/sec2)), the stiffness of 

each floor,   , as 297 N/cm (169 lb/in), and a damping ratio for each mode of 0.5%.  
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Figure 3.6: Schematic Diagram of Building with MR Dampers. 

 

The Bouc-Wen model for the MR damper was presented in Chapter 2. The MR damper 

parameters used in this study are 0ac = 0.0064 N-sec/cm, 0bc = 0.0052 N-sec/cm-V, a = 

8.66 N/cm, b = 8.66 N/cmV,  = 300     ,  = 300      , A = 200, and n = 2. These 

parameters were selected based on the identified model of the shear-mode prototype MR 

damper. 

 

In simulation, the model of the structure is subjected to the NS component of the 1940 El 

Centro earthquake. The simulations were performed in MATLAB. The Simulink model 

of the simulation is shown in Figure 3.7. The Runge-Kutta method is employed as the 

integrator and the integration time step is 0.0001 sec. Because the building system 

considered is a scaled model, the amplitude of the earthquake was scaled to ten percent of 

the full-scale earthquake to represent the magnitude of displacements that would be 

observed in laboratory experiments with this structure. 
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Figure 3.7: Simulink Model for Control System. 

 

Four evaluation criteria are defined as following to evaluate and compare the control 

algorithms [13]. The first evaluation criterion is a measure of the normalized maximum 

floor displacement relative to the ground, given as 
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where ( )ix t  is the relative displacement of the ith floor over the entire response, and  

maxx  denotes the uncontrolled maximum displacement. The second evaluation criterion is 

a measure of the reduction in the interstory drift. The maximum of the normalized 

interstory drift is 
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where    is the height of each floor (30 cm), ( )id t  is the interstory drift of the above 

ground floors over the response history, and 
max

nd  denotes the normalized peak interstory 

drift in the uncontrolled response. The third evaluation criterion is a measure of the 

normalized peak floor accelerations, given by 
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where the absolute accelerations of the  th floor, ( )aix t , are normalized by the peak 

uncontrolled floor acceleration, denoted 
max

ax . The final evaluation criteria considered in 

this study is a measure of the maximum control force per device, normalized by the 

weight of the structure, given by 
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4
, 

max
i

t i

f t
J

W

 
  

 
 

 (3.43) 

 

where W is the total weight of the structure (1335 N). The corresponding uncontrolled 

responses are as follows: maxx = 1.313 cm, 
max

nd = 0.00981 cm, 
max

ax = 146.95 cm/sec
2
 [13]. 

 

Figure 3.8 shows the relationship between the structural damping ratio   and the control 

parameters dk  and dc . In Figure 3.8, the absolute value of dk  is increased from 0 to 240 

N/cm. As dk  increases, the controlled structural damping ratio  is increased. For 

relative small value of dk  ( 160dk   N/cm),   increases first with dc  increasing, and 

comes to the peak at certain point 0dc , and then start decreasing when dc  continues 

increasing. When dk  has a relative big absolute value, for example, 240dk    N/cm,   

increases rapidly to 1 as dc  increases, which means the poles corresponding to the first 

mode of the controlled structure become closer and closer to the real axis in the complex 

plane. When the value of dc  continues to increase, the poles are observed to start crossing 

into the right half plane (RHP), and the control system becomes unstable. 
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Figure 3.8: Relationship Between   and the Control Parameters dk  and dc . 

 

Figure 3.8 is used to guide the selection of the values of control parameters. Because the 

force generated by the MR damper is dependent on the local responses of the structural 

system, the desired control force cannot always be produced by the MR damper. Thus, 

the original clipping algorithm discussed in Section 2.3 is used to induce the MR damper 

to generate approximately the desired control force. Parametric study is conducted for the 

control system with various values of control parameters dk  and dc . The results are 

given in Table 3.1. 

 

Table 3.1: Parametric Study. 

Coefficients J1 J2 J3 J4 

kd = 0, cd = 37 0.546 (+8%) 0.630 (-9%) 0.566 (-37%) 0.0174 

kd = 40, cd = 35 0.529 (+5%) 0.601 (-14%) 0.560 (-38%) 0.0167 

kd =  80, cd = 32 0.512 (+1%) 0.570 (-18%) 0.561 (-38%) 0.0160 

kd =  160, cd = 28 0.461 (-9%) 0.510 (-27%) 0.898 (-1%) 0.0155 

kd =  200, cd = 26 0.429 (-15%) 0.486 (-30%) 0.976 (+8%) 0.0159 

kd =  220, cd = 24 0.413 (-18%) 0.475 (-32%) 0.977 (+8%) 0.0160 
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As the absolute value of dk  increases, from Figure 3.8, the structural damping is 

increased, and the controller is becoming more aggressive. From Table 3.1, bigger 

structural damping results in smaller responses of maximum relative displacement and 

interstory drift, as we expected. However, the maximum acceleration is increased as dk  

increases. This is because the control forces are clipped by the force feedback loop.  

 

Two VDNS control designs with different capabilities are selected to compare with the 

clipped-optimal controllers in [13]. VDNS A is designed by taking kd =  80 N/cm, and cd 

= 32 N-sec/cm. VDNS B is designed by taking kd =  220 N/cm, and cd = 24 N-sec/cm. 

The results show that VDNS A appears to be quite effective in achieving significant 

reductions in both the maximum absolute acceleration and interstory displacement over 

the passive case and clipped-optimal controller A. In the meanwhile, the maximum 

relative displacement of VDNS A is increased a little bit compared to the best passive 

case, which is much better than clipped-optimal controller A. VDNS B has the biggest 

reduction of interstory drift, which is 32% reduction as compared to the best passive case, 

and has comparable level of maximum relative displacement with clipped-optimal 

controller B, which is 18% reduction as compared to the best passive case. In the 

meanwhile, the increase of maximum acceleration (+8% compared to the best passive 

case) is much smaller than clipped-optimal controller B (+38%). The comparison of 

different control designs is given in Table 3.2. 

 

Table 3.2: Evaluation Criteria of Different Control Designs. 

Control Strategy J1 J2 J3 J4 

Passive-Off 0.862 0.801 0.904 0.00292 

Passive-On 0.506 0.696 1.41 0.0178 

Clipped-Optimal A 0.631 (+24%) 0.640 (-8%) 0.636 (-29%) 0.01095 

Clipped-Optimal B 0.405 (-20%) 0.547 (-21%) 1.25 (+38%) 0.0178 

VDNS A 0.512 (+1%) 0.570 (-18%) 0.561 (-38%) 0.016 

VDNS B 0.413 (-18%) 0.475 (-32%) 0.977 (+8%) 0.016 
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Additionally, to compare the performance of the different control algorithms, the peak of 

the relative displacement, interstory drift and absolute acceleration responses for all 

floors were examined. Figure 3.9 shows the peak response profile of the entire structure 

for a variety of cases. 

 

 

Figure 3.9: Peak Responses of Each Floor of the Building. 

 

3.5. Summary 

 

In this chapter, the viscous damping and negative stiffness (VDNS) control algorithm is 

provided for the response control of earthquake excited buildings. This algorithm is 

designed to increase the damping of structure to reduce the responses. It results in a very 

simple form of control force, which requires only the measurements of the relative 

displacement and relative velocity across the control device. Therefore, the control 

systems designed base on the VDNS algorithm can be implemented decentralized. In 

addition, the small amount of sensors and simple algorithm would reduce the source of 

errors and uncertainties. 

 

A six-story building was used as an example to demonstrate the procedure of the design 

of VDNS controller. This building has been studied by Jansen et al.. The MR damper is 
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used as the control device, therefore a secondary controller or clipping algorithm is 

required to induce the MR damper to produce approximately the desired control force. 

Parametric study was conducted for the VDNS control system. It was observed that as the 

value of dk  increases, the structural damping is increased, resulting in the reduction of 

the maximum relative displacement and interstory drift of the building, but the maximum 

absolute acceleration increases. 

 

Two control systems were designed based on the VDNS algorithm, and the results are 

compared with the clipped optimal controllers provided in [13], and the passive cases as 

well. Both designed controllers are able to make the values of evaluation criteria 1 3J J  

be less than one, indicating the controllers are effective to reduce the responses of the 

building, as compared to the uncontrolled case. The VDNS controller A achieves better 

results of the maximum interstory drift and the maximum absolute acceleration than the 

best passive case, and maintains the same level of peak relative displacement. In addition, 

it is found to be more effective than clipped optimal controller A. The VDNS controller B 

has better results of the maximum relative displacement and the maximum interstory drift 

than the best passive case, with slight increase in the maximum absolute acceleration. 

VDNS B is also found to be more effective than the clipped optimal controller B. 
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CHAPTER 4. CASE STUDY: 20-STORY LINEAR BENCHMARK BUILDING 

 

 

In this chapter, the proposed VDNS control algorithm is applied to a model of a full scale 

building to verify its effectiveness. The model used in this study is the linear full scale 

20-story building model developed for the benchmark control. The responses of the 

building, including the maximum and normed relative displacement, interstory drift ratio, 

acceleration, and required control forces, are evaluated due to various earthquake 

excitations. An active control system using 897 kN hydraulic actuators and a semi-active 

system employing 1000 kN MR dampers are developed based on the VDNS algorithm. 

The two control systems are evaluated for different models of the structure, 

corresponding to the structure before and after earthquake, to study the robustness of the 

algorithm. 

 

4.1. Benchmark Building Description 

 

The benchmark building used for case study herein is a full scale 20-story linear 

benchmark building. The building was designed by Brandow & Johnston Associates for 

the SAC Phase II Steel Project. It was designed to meet the seismic code and represents a 

typical mid- to high-rise building designed for the Los Angeles, California region, 

although it was not constructed. Detailed information about this 20-story linear building 

is provided in the benchmark problem statement [39].  

 

This benchmark study focuses on an in-plane (2-D) analysis of one-half of the entire 

structure. The frame being considered is one of the N-S MRFs (the short, or weak, 

direction of the building). The height to width ratio for the N-S frame is 2.65:1. The N-S 

MRF is depicted in Figure 4.1. Control devices can be implemented throughout these N-S 

frames of the structure. The LA 20-story structure is modeled using 180 nodes 
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interconnected by 284 elements, as seen in Figure 4.2. The nodes are located at beam-to-

column joints and at column splice locations. Elements are created between nodes to 

represent the beams and columns in the structure. Each element, modeled as a plane 

frame element, contains two nodes and six DOFs. The length, area, moment of inertia, 

modulus of elasticity and mass density are pre-defined for each element. The elemental 

consistent mass and stiffness matrices are determined as functions of these properties. 

 



41 

 

 

Figure 4.1: Los Angeles 20-Story Building N-S MRF [39]. 
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Figure 4.2: Node Numbers for the Los Angeles 20-Story Building N-S MRF [39]. 

 

4.2. Degradation Effects 

 

The change of the dynamic properties of a building from before (pre-earthquake) to after 

(post-earthquake) a strong motion earthquake can be substantial. This change can cause 

as much as a 20% increase in the fundamental period, which is primarily due to stiffness 
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degradation. Such stiffness reduction is attributed to the loss of non-structural elements 

and to damage of structural elements. Because the time between the main earthquake and 

subsequent significant aftershocks may not be large, an effective control system should 

be sufficiently robust to perform adequately based either on the pre-earthquake structure 

or the post-earthquake structure. 

 

Two evaluation models are developed: the pre-earthquake evaluation model and the post-

earthquake evaluation model. These two models are intended to account for the 

degradation effects that can occur within the structure during a strong ground motion and 

should be viewed as liberalized models of the structure before and after degradation of 

the structure has occurred. The degradation of the benchmark building is modeled as a 

reduction in stiffness from the pre-earthquake to post-earthquake models. It should be 

noted that the post-earthquake building model assumes structural damage has occurred, 

which may be potentially avoided through the application of control devices. Therefore, 

the post-earthquake building model may be viewed in some sense as representing a 

“worst-case” scenario. 

 

The pre-earthquake evaluation model represents the LA 20-story structure as-built. The 

as-built structure includes additional stiffness provided by the lateral resistance of the 

structure’s gravity system and non-structural elements such as partitions and cladding. 

The non-structural elements are accounted for in the pre-earthquake evaluation model by 

proportionally increasing the structural stiffness matrix such that the first natural 

frequency of the evaluation model is 10% greater than that of the nominal model. The 

pre-earthquake damping is determined using this increased stiffness. 

 

The post-earthquake evaluation model is intended to represent the LA 20-story structure 

after a strong motion earthquake. After a strong motion earthquake, the non-structural 

elements may no longer provide any additional stiffness to the structure. Moreover, the 

structural elements may be damaged, causing a decrease in stiffness. In this study, a post-

earthquake evaluation model is developed in which the natural frequency of the structure 
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is decreased by 10% from the nominal structural model. This reduction is accomplished 

by an associated reduction in the structural stiffness matrix, corresponding to an 18.2% 

reduction in natural frequency from the pre-earthquake evaluation model to the post-

earthquake evaluation model. The post-earthquake damping is determined using this 

decreased stiffness. 

 

The first 10 natural frequencies of the pre-earthquake model are: 0.29, 0.83, 1.43, 2.01, 

2.64, 3.08, 3.30, 3.53, 3.99 and 4.74 Hz. The first 10 natural frequencies of the post-

earthquake model are: 0.24, 0.68, 1.17, 1.65, 2.16, 2.52, 2.70, 2.89, 3.26 and 3.88 Hz. 

 

4.3. Control System Design 

 

Two control systems have been developed based on the VDNS algorithm introduced in 

Chapter 3, and applied to the numerical models of the benchmark structure. Hydraulic 

actuators are used for the active control system to produce the control forces of VDNS 

algorithm. The control system employing MR dampers is also developed to investigate 

the application of VDNS algorithm in semi-active control. The phenomenological model 

of the MR damper and the modified clipping algorithm discussed in Chapter 2 is 

employed in the numerical simulation. Each control device is oriented horizontally, and is 

rigidly attached between the two adjacent floors of the building. The various components 

of the control systems (i.e., sensors, control devices) and design of VDNS control system 

are described in this section. 

 

4.3.1. Sensors 

 

The device displacements are measured using LVDTs. The the sensitivity of each LVDT 

is 100 V/m. The relative velocity of the control device is obtained by taking the 

difference of the absolute velocities between two floors where the device is attached. The 

absolute velocity measurements are approximated by passing the measured accelerations 

through a second order filter with the following transfer function [7] 
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The sensitivity of each accelerometer is 10 V/g. The semi-active control system also 

utilizes force feedback measurements from force transducers located on each device. The 

sensitivity of each force transducer is 10 V/1000 kN. 

 

Control devices are implemented on all the twenty stories in this study. Therefore, the 

vector of measurements for control forces of the semi-active system is 

 1 2 20, , ,
T

m m m mf f ff . One advantage of the VDNS algorithm is that it can be 

implemented decentralized. Only the measurements at the locations of the control devices 

are required. Thus, LVDTs and accelerometers are simulated on floors 1 to 20. In 

addition, another accelerometer is needed to measure the ground acceleration. So, the 

vector of measured responses is 
1 2 20 1 2 20, , , , , , , ,a a a d d d

T

m gx x x x x x x   y . As specified 

in the benchmark problem statement, each of these measured responses are assumed to 

contains an RMS noise of 0.03 Volts, which are modeled as Gaussian rectangular pulse 

processes with a pulse width of 0.01 sec. 

 

4.3.2. Control Devices 

 

Hydraulic actuators are chosen for the active control systems in this study. Typically in 

control design, device constraints are a major concern that needs to be addressed. These 

limitations could include device stroke, velocity, or force output. For the study, the active 

devices are considered to be ideal actuators with a maximum force output of 897 kN (200 

kip) and a stroke of  8.9 cm ( 3.5 in). 

 

MR dampers are used for the semi-active control system in this study. The approach used 

for modeling of the MR damper was presented in Chapter 2. Yoshida [27] developed 
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parameters for the MR damper model to have a capacity of 1000 kN (224.8 kip) and are 

given as:    = 1.0872e5 N/cm,    = 4.96116e5 N/(cm-V), n = 1, A = 1.2,   = 3 cm
-1

,   = 

3 cm
-1

,   = 5 sec
-1

, and Vmax = 10 V. The scaled up MR damper is estimated to have a 

maximum power requirement of 50 Watts, according to the manufacturer. Device 

constraints such as stroke and velocity are neglected for the MR damper. 

 

4.3.3. VDNS Controller 

 

A state space representation of the input-output model for the LA 20-story structure was 

developed in the benchmark problem statement. The model is of the form 

 

 
s s gx  x Ax Bf E  (4.2) 

 

 
m m m m g ms x   y C x D f F v  (4.3) 

 

 
e e s e e gx  y C x D f F  (4.4) 

 

 z s zz C x D f  (4.5) 

 

where my  is the vector corresponding to measured outputs, mv  is a measurement noise 

vector, and ey  is the vector corresponding to the regulated outputs that are used for 

evaluation of the systems. 
1 2 20 1 2 20
, , , , , , ,

T

N N N N N Nx x x x x x   z  is a vector which 

represents the set of states corresponding to the horizontal displacements and velocities of 

all floors relative to the ground. 

 

All 20 floors are implemented with control devices in the design of control system. The 

desired control force of the ith control device according to the VDNS algorithm is given 

as 
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 di di i di if k d c v   (4.6) 

 

where id  and iv are the relative displacement and velocity across the ith control device, 

dik  is the negative stiffness coefficient, which has to be negative, and dic  is the damping 

coefficient, which has to be positive. Let all desired control forces have the same value of 

dk  and dc , therefore, the vector of control force f can be written as  
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where d d
   T K C  consists of the negative stiffness matrix dK and the control 

damping matrix dC , and  
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Using Eq. (4.5) in Eq. (4.7), 
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  .z s s  f Tz T C x D f  (4.10) 

 

Therefore, 

 

  
1

.z z s


 f I TD TC x  (4.11) 

 

Using Eq. (4.11) in Eq. (4.2), the controlled system becomes 

 

 
s c s c gx x A x E  (4.12) 

 

where  

 

  
1

.c z z


 A A B I TD TC  (4.13) 

 

In most cases, z D 0 . The poles 
,m m d mi      of the controlled system can be 

determined by calculating the eigenvalues of the state matrix Ac. To ensure that the 

controlled system is stable, all eigenvalues of Ac must have negative real parts, i.e., 

0m  . The damping ratio of the first mode of the controlled structure 1  can be 

calculated as 

 

 1 1
1

2 2
,1 1 ,1

.
n d

 


  
   (4.14) 

 

Because the evaluation model is quite large, a reduced order model of the system is 

developed for purposes of control design in the benchmark problem definition, and the 

reduced model is employed in this study as well. dk  and dc  are chosen as –10000 kN/m 

and 40000 kN-sec/m respectively. Figure 4.3(a) and (b) show the poles of the control 
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system of the reduced order model, all of which are located in the left half plane (LHP). 

Because the reduced model is based on the pre-earthquake model of the structure, it is 

observed to have the same poles as those kept in the full pre-earthquake model, as shown 

in Figure 4.3(c) and (d). Figure 4.3(e) and (f) give the locations of poles for the post-

earthquake model, and all of the poles are also located in LHP. Therefore, the control 

system developed based on VDNS algorithm is stable for both pre-earthquake and post-

earthquake structures. 

 

Northridge earthquake was used to determine the number of control devices on each floor 

because it requires the largest control forces in the structure. In the active control system, 

the numbers of hydraulic actuators located at floors from 1 to 20 are [10, 8, 7, 7, 6, 6, 6, 5, 

5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2]. The total number of control devices is 98. In the semi-

active control system, the numbers of MR dampers located at floors from 1 to 20 are [9, 7, 

6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 4, 3, 3, 2, 2, 2]. The total number of devices is 86. The 

Simulink model of the simulation is shown in Figure 4.4. The Dormand–Prince method is 

employed as the integrator and the integration step is 0.0005 sec. 

 

4.4. Evaluation Criteria 

 

The controllers are evaluated under four earthquake records provided in the benchmark 

problem statement [39]: (i) El Centro; (ii) Hachinohe; (iii) Northridge; (iv) Kobe. The 

power spectra of the earthquakes are shown in Figure 4.5. To evaluate the control 

algorithm, the first fourteen evaluation criteria defined in the benchmark problem 

statement are evaluated for each control design. All of evaluation criteria are summarized 

in Table 4.1 [39]. For the semi-active system, the evaluation criteria describing the 

required maximum control power 13J  and normed control power 14J , are calculated by 

assuming that the maximum power is required for each MR damper when it is ON.  
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 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Figure 4.3: Poles Locations of the Controlled Structure. 
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Figure 4.4: Simulink Model for Control System. 

 

 

 

 

Figure 4.5: Power Spectra of Earthquakes. 
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Table 4.1: Summary of Evaluation Criteria [39]. 

 

 

4.5. Numerical Results 

 

4.5.1. Active Control System 

 

The performance of the active control system of VDNS algorithm using hydraulic 

actuators is first assessed. The control design is evaluated for all four earthquake records, 

and for both the pre-earthquake and post-earthquake evaluation models described 

previously as well.  

 

The resulting evaluation criteria for this control design are presented in Table 4.2 (pre-

earthquake) and Table 4.3 (post-earthquake). In these tables, the evaluation criteria are 

shown for each earthquake, and the maximum value over all four earthquakes is provided 
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in the last column. Additionally, the maximum values of the control constraints are 

provided for each earthquake. 

 

Note that for the pre-earthquake study, the designed active control system based on the 

VDNS algorithm is able to reduce the normed responses of the building significantly 

under all four earthquake excitations. This is indicated by the evaluation criteria 5 8J J , 

whose values are all far less than one. The values of the peak responses 1 4J J  are also 

less than one for the active control system, except that the peak base shear under 

Northridge earthquake is slightly greater than the uncontrolled case, indicating that the 

control system is also effective to reduce the peak responses. From Table 4.2, the control 

system reduces the maximum relative displacement by 50.1–67.0%, the maximum 

normalized drift by 35.9–62.1%, and the maximum absolute acceleration by 7.3–32.8% 

as compared to the uncontrolled values. Figure 4.6 shows a series of plots portraying 

certain maximum responses of the building. For each earthquake, the maximum value of 

the non-dimensionalized interstory drift at each floor above ground, and the maximum 

value of the absolute acceleration at each floor above ground, are plotted. It is observed 

that the peak interstory drifts and the peak absolute accelerations are reduced at all floors 

for all earthquake excitations, as compared to the uncontrolled cases. Figure 4.6 also 

shows the responses of the roof of the building over time for each earthquake. For clarity, 

only the first 80 seconds of the responses are shown. In these plots one observes that the 

control system not only reduces the peak response, but is also able to relatively quickly 

dampen out the responses of the building. 

 

Although the control system is designed based on the pre-earthquake model of the 

building, the control strategy maintains its effectiveness in the post-earthquake structure 

as well. The normed responses of the post-earthquake structure are substantially reduced, 

as demonstrated quantitatively by the values of the evaluation criteria 5 8J J  as shown 

in Table 4.3. The maximum relative displacements and maximum non-dimensionalized 

interstory drifts of the structure are reduced by 35.3–57.1% and 25.2–62.8% of the 

uncontrolled values, respectively. Figure 4.7 shows the time histories of the displacement 
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of the roof relative to the ground for all earthquakes. However, the reductions of the 

maximum floor accelerations and the maximum base shear are not as effective for the 

post-earthquake structure as for the pre-earthquake model. The reason might be the 

relative lower stiffness of the post-earthquake structure after strong earthquake motion. 

When the same control force is applied by the control algorithm, the whole structure 

becomes relatively stiffer for the post-earthquake model, which might cause high 

acceleration at certain floors where the control devices are attached. In Figure 4.7, the 

maximum value of the non-dimensionalized interstory drift at each floor above ground, 

and the maximum value of the absolute acceleration at each floor above ground are 

plotted. It is shown that the maximum interstory drifts are reduced substantially at all 

floors for every earthquake. Reductions of the maximum absolute accelerations at all 

floors are also observed for all earthquakes, except the 1st floor under El Centro 

earthquake. 

 

4.5.2. Semi-Active Control System 

 

To study the effectiveness of the application of the VDNS algorithm in the semi-active 

control, MR dampers are employed as the semi-active control devices to produce the 

control forces to the benchmark building. The VDNS controller designed in Section 4.3.3 

is used as the nominal controller for the semi-active system. The control input to the MR 

damper is determined by the modified clipping algorithm discussed in Section 2.3 to 

generate the control force. 

 

The performance of the semi-active control system in reducing the responses of the 

building is similar to that of the active system for different earthquakes. The normed 

responses ( 5 8J J ) are reduced substantially for both pre-earthquake and post-

earthquake structures. For the pre-earthquake model, the values of the peak responses 

1 4J J  are also less than one for most cases, except that the peak base shear under 

Northridge earthquake is slightly greater than the uncontrolled case. For the post-
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earthquake model, the maximum relative displacements 1J  and maximum non-

dimensionalized interstory drift 2J  are reduced as compared to the uncontrolled case, but 

the reduction of the maximum floor accelerations 3J  and the maximum base shear 4J  is 

not as effective. 

 

One can compare the performances of active and semi-active systems visually in Figure 

4.6 and Figure 4.7. It is found that the semi-active control system has comparable 

reduction of the relative displacements of the building to the active system. The peak 

interstory drifts at floors above ground of two control systems have similar profiles, while 

the peak absolute acceleration of the semi-active control system is generally greater than 

the active system at each floor. The acceleration levels of the semi-active system at upper 

floors are typically reduced significantly as compared to the uncontrolled case, although 

some increases in the acceleration levels are observed at the lower floors, because more 

control devices are attached at the lower floors. The big interstory drift of the building 

under Northbridge and Kobe earthquakes would cause the building to yield. And the 

nonlinear behavior due to the yielding are reduced and even eliminated by the control 

systems, as the drift ratios are reduced significantly. 

 

The results of both the active control system and the semi-active system are compared 

with the results of a sample control system for both pre-earthquake structure (Figure 4.8) 

and post-earthquake structure (Figure 4.9). The sample controller is based on the LQG 

method and is explained in detail in the benchmark problem statement. The results of the 

sample control system are provided again in Table 4.6 and Table 4.7 for comparison. It is 

observed again that the active and semi-active control systems have comparable 

performance in reducing the peak relative displacement and the peak interstory drift, and 

both of them are more effective than the sample controller. Better results are observed for 

the semi-active system in the normed interstory drift comparing to the active system and 

the sample control system. The active system and the sample controller have close 

performance in the reduction of acceleration of the building, while the semi-active system 

is less effective to reduce the acceleration. 
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The magnitudes of the ratios of power spectral density functions for the semi-active 

control system are compared to those of the uncontrolled system in Figure 4.10. In this 

figure, the ratios from the ground acceleration to the displacement, velocity and 

acceleration at the first floor of the pre-earthquake building are plotted under El Centro 

earthquake. Notice that the peaks of the ratios of the controlled building are smaller than 

those of the uncontrolled transfer functions. It is observed that the magnitude of the 

controlled building from ground to the first floor acceleration is slightly increased at 

higher frequencies. The reason might be that the accelerations of the building is more 

affected by the higher modes than the displacements and velocities, and only the first 

mode was considered during the design of the control system. This also coincides with 

the observation that the designed control system is more effective to reduce the 

displacements and velocities of the building than the accelerations. 
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Figure 4.6: Comparison of Controlled and Uncontrolled Responses (Pre-Earthquake). 
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Figure 4.7: Comparison of Controlled and Uncontrolled Responses (Post-Earthquake). 
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Figure 4.8: Bar Chart Comparing the Evaluation Criteria for Pre-Earthquake Model. 
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Figure 4.9: Bar Chart Comparing the Evaluation Criteria for Post-Earthquake Model. 
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Figure 4.10: Ratios of Power Spectral Density Functions from Ground Acceleration to 

the First Floor Responses. 
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Table 4.2: Pre-Earthquake Evaluation Criteria for Active Control System. 

 El Centro Hachinohe Northridge Kobe Max Value 

J1 0.409593 0.330556 0.461942 0.498787 0.498787 

J2 0.461923 0.476295 0.640581 0.379381 0.640581 

J3 0.926808 0.672309 0.722794 0.77899 0.926808 

J4 0.96136 0.657561 1.0904 0.847676 1.0904 

J5 0.363671 0.268029 0.266699 0.387001 0.387001 

J6 0.584397 0.329529 0.31432 0.594257 0.594257 

J7 0.576808 0.361838 0.445285 0.610601 0.610601 

J8 0.524599 0.350499 0.375204 0.673255 0.673255 

J9 0.00932626 0.00932537 0.0164856 0.0160326 0.0164856 

J10 0.0416193 0.0385525 0.0519467 0.0484308 0.0519467 

J11 0.01824 0.0117523 0.0425261 0.0476608 0.0476608 

J12 0.0359887 0.0271075 0.0926864 0.119329 0.119329 

J13 98 

J14 41 

   
   

|  |      4.26156 4.26115 7.5094 7.29797 7.5094 

   
   

|  
 |     0.0157983 0.0199336 0.0550167 0.0275508 0.0550167 

   
   

|  |       507.134 507.085 896.436 871.806 896.436 
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Table 4.3: Post-Earthquake Evaluation Criteria for Active Control System. 

 El Centro Hachinohe Northridge Kobe Max Value 

J1 0.465108 0.646939 0.547181 0.429078 0.646939 

J2 0.634438 0.747491 0.569795 0.371943 0.747491 

J3 1.02291 0.957104 0.823839 0.887274 1.02291 

J4 1.89749 1.19804 1.34362 1.23558 1.89749 

J5 0.340113 0.321475 0.328939 0.162932 0.340113 

J6 0.794106 0.654323 0.391571 0.420428 0.794106 

J7 0.752423 0.62454 0.514141 0.621811 0.752423 

J8 0.602536 0.538537 0.566679 0.441936 0.602536 

J9 0.00918375 0.0091826 0.015767 0.0162577 0.0162577 

J10 0.0520016 0.0752031 0.0637042 0.0438298 0.0752031 

J11 0.0169939 0.0131137 0.0395741 0.0524428 0.0524428 

J12 0.0425576 0.036951 0.0930665 0.0967495 0.0967495 

J13 98 

J14 41 

   
   

|  |      4.21016 4.20963 7.19547 7.40661 7.40661 

   
   

|  
 |      0.0144497 0.0224339 0.0578212 0.0287598 0.0578212 

   
   

|  |       499.385 499.322 857.36 884.043 884.043 
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Table 4.4: Pre-Earthquake Evaluation Criteria for Semi-Active Control System. 

 El Centro Hachinohe Northridge Kobe Max Value 

J1 0.531113 0.412962 0.581453 0.603492 0.603492 

J2 0.59043 0.504654 0.681825 0.45346 0.681825 

J3 0.895403 0.773268 0.851686 0.805963 0.895403 

J4 0.929798 0.680892 1.09529 0.836865 1.09529 

J5 0.442744 0.356359 0.326035 0.402454 0.442744 

J6 0.46913 0.382851 0.337438 0.409614 0.46913 

J7 0.63703 0.516389 0.478426 0.654141 0.654141 

J8 0.671658 0.497874 0.422268 0.677896 0.677896 

J9 0.008118 0.00782025 0.0170844 0.014869 0.0170844 

J10 0.0530512 0.040848 0.0552912 0.0551352 0.0552912 

J11 0.0000304 0.0000193 0.0000198 0.0000262 0.0000304 

J12 0.0001564 0.0001193 0.0000835 0.0001670 0.0001670 

J13 86 

J14 61 

   
   

|  |      10 10 10 10 10 

   
   

|  
 |      0.0201377 0.0211205 0.0585589 0.0313648 0.0585589 

   
   

|  |       441.433 425.242 929.001 808.533 929.001 

 

  



65 

 

 

Table 4.5: Post-Earthquake Evaluation Criteria for Semi-Active System. 

 El Centro Hachinohe Northridge Kobe Max Value 

J1 0.561381 0.700934 0.659729 0.418342 0.700934 

J2 0.67359 0.830512 0.625755 0.433519 0.830512 

J3 0.990519 1.04941 1.14612 0.858309 1.14612 

J4 1.78191 1.25884 1.32837 1.16985 1.78191 

J5 0.359871 0.404711 0.404784 0.173486 0.404784 

J6 0.397573 0.452483 0.386805 0.21705 0.452483 

J7 0.826559 0.694292 0.565025 0.669214 0.826559 

J8 0.677791 0.680434 0.57377 0.432115 0.680434 

J9 0.0069155 0.00674475 0.0162669 0.0134758 0.0162669 

J10 0.0647521 0.0835556 0.0699607 0.0515888 0.0835556 

J11 0.0000274 0.0000264 0.0000184 0.0000283 0.0000283 

J12 0.0002074 0.0001934 0.0000898 0.0001413 0.0002074 

J13 86 

J14 61 

   
   

|  |      10 10 10 10 10 

   
   

|  
 |      0.0179927 0.0249255 0.0634998 0.033851 0.0634998 

   
   

|  |       376.044 366.759 884.544 732.775 884.544 
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Table 4.6: Pre-Earthquake Evaluation Criteria for Sample Control System. 

 El Centro Hachinohe Northridge Kobe Max Value 

J1 0.83641 0.64297 0.84169 0.83707 0.84169 

J2 0.76526 0.66295 0.89064 0.77989 0.89064 

J3 0.90873 0.68122 0.73076 0.77925 0.90873 

J4 0.82445 0.68637 0.92953 0.75013 0.92953 

J5 0.67900 0.55644 0.56908 0.69826 0.69826 

J6 0.64982 0.53422 0.54936 0.73189 0.73189 

J7 0.56290 0.57347 0.59964 0.62149 0.62149 

J8 0.65736 0.53545 0.54906 0.70146 0.70146 

J9 0.0051430 0.0044520 0.011703 0.013881 0.013881 

J10 0.063221 0.053661 0.072224 0.10050 0.10050 

J11 0.0060031 0.0039088 0.013172 0.019699 0.019699 

J12 0.017602 0.016059 0.046692 0.066554 0.066554 

J13 50 

J14 5 

   
   

|  |      2.3322 2.0185 5.3437 6.3193 6.3193 

   
   

|  
 |      0.023998 0.027745 0.076493 0.057171 0.076493 

   
   

|  |       279.66 242.08 636.37 754.79 754.79 
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Table 4.7: Post-Earthquake Evaluation Criteria for Sample Control System. 

 El Centro Hachinohe Northridge Kobe Max Value 

J1 0.90540 0.95701 0.89536 0.67871 0.95701 

J2 0.78630 0.95220 0.87461 0.75342 0.95220 

J3 0.96364 0.98872 0.87791 0.86729 0.98872 

J4 1.0237 1.0098 1.0226 0.83770 1.0237 

J5 0.58421 0.58789 0.64182 0.49803 0.64182 

J6 0.61935 0.58410 0.62597 0.55642 0.62597 

J7 0.72267 0.63379 0.54427 0.61833 0.72267 

J8 0.58675 0.54101 0.57136 0.52146 0.58675 

J9 0.0047313 0.0040596 0.010589 0.012992 0.012992 

J10 0.075587 0.095798 0.097784 0.089657 0.097784 

J11 0.0043104 0.0028936 0.012276 0.014300 0.014300 

J12 0.016151 0.013715 0.043397 0.049986 0.049986 

J13 50 

J14 5 

   
   

|  |      2.0915 1.8060 4.7344 5.7984 5.7984 

   
   

|  
 |      0.021003 0.028578 0.088753 0.058830 0.088753 

   
   

|  |       257.28 220.75 575.81 706.44 706.44 

 

 

4.6. Summary 

 

This chapter focuses on the application of the proposed VDNS control to a linear full 

scale building to verify the effectiveness of the control strategy. The full scale building 

used in this chapter is the 20-story building used for the benchmark study. To investigate 

the achievable capabilities of the control algorithm, two control systems were developed 

and evaluated, including an active control system using 897 kN hydraulic actuators, and a 
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semi-active system using 1000 kN MR dampers. Control devices are implemented on all 

20 floors above ground of the building. Both control systems are designed to be 

decentralized because of the specialty of the VDNS algorithm. Only the relative 

displacement and relative velocity across the control device are needed for the controller 

of each control device. The device displacement is measured directly, and the device 

velocity is derived from the absolute accelerations measured at the adjacent floors. In 

addition, the semi-active control system also employed measurements of the forces 

produced by each device for control force determination. The MR damper was controlled 

using the modified clipping algorithm to produce the desired control force. 

 

Both of the designed active and semi-active control systems are able to substantially 

reduce the normed responses of the building. The maximum relative displacement and 

the maximum interstory drift responses are reduced significantly. Reduction on the peak 

accelerations is observed as well, although slight increases are found for some cases. 

Therefore, it can be concluded that the designed control systems based on the VDNS 

algorithm are effective in reducing the responses of the building under earthquakes, and 

the performance is especially good for the floor displacement and interstory drift. 

 

Both control systems are robust to the changes of the building’s properties. Although the 

controllers are designed based on the pre-earthquake model of the building, significant 

response reductions are achieved in the post-earthquake structure as well. Increases of the 

maximum base shear under all four earthquake excitations are observed. The reason 

might be the relative lower stiffness of the post-earthquake structure after strong 

earthquake motion. When the same control force is applied by the control algorithm, the 

whole structure becomes relatively stiffer for the post-earthquake model. 

 

Generally, the active control system produces slightly better results than the semi-active 

system, while significant reductions by the semi-active system are observed in the 

normed interstory drift, as compared to the active system. In addition, the semi-active 

system requires significantly less power than the active controller. The designed control 
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systems produce better results in the floor displacement and interstory drift than the 

provided sample controller, and have comparable performance in the acceleration 

response, demonstrating again the effectiveness of the control algorithm and the designed 

systems. 
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CHAPTER 5. SUMMARY 

 

 

This thesis studied the application of the viscous damping and negative stiffness (VDNS) 

control algorithm to reduce the responses of civil buildings under earthquakes. VDNS is a 

very simple algorithm, as compared to other control strategies that require the designers 

to have deep understanding in modern control theory. It provides an effective option for 

the semi-active control of the seismically excited buildings. 

 

The H2/LQG control method is one of the most widely used control strategies in 

structural control and has been shown to be effective in many applications. The H2/LQG 

method was provided in detail in Chapter 2. In this method, weighting matrices Q and R 

are specified for a performance index (or cost function) J. An optimal gain matrix K is 

then calculated to minimize the performance index, by solving the algebraic Riccati 

equation. Herein the performance index J is a mathematical function involving the 

regulated responses and control inputs, without certain physical meaning. Therefore, the 

controller is designed in a mathematical perspective. In addition, for the designers, it is 

usually unclear how the gain matrix K is derived by the algebraic Riccati equation, and 

why the derived K makes the performance index J minimum. K is usually solved directly 

by MATLAB in the control system design.  

 

The pseudo negative stiffness (PNS) algorithm proposed by Iemura et al. gives a control 

force with simple form, which consists of only a viscous damping force and a negative 

stiffness force. Iemura et al. indicated that the PNS-controlled damper could reduce the 

seismic responses of the cable-stayed bridges, because the PNS loop reduced the total 

force of the damper force and the existing-member stiffness force while keeping large 

area inside the hysteretic loop. In addition, they observed that the LQR controller could 

also produce the pseudo negative stiffness hysteretic loops, and they believed that the 
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produced pseudo negative stiffness hysteretic loops should be one of the reasons that 

make the LQG controller effective. 

 

The viscous damping and negative stiffness (VDNS) control algorithm was proposed by 

Weber et al. for the mitigation of stay cable vibrations. The idea of the VDNS algorithm 

is to mitigate the stay cable vibrations by increasing the cable damping. The control force 

produced by this algorithm has the same form as that of PNS algorithm. To apply the 

VDNS algorithm to the response control of buildings, a numerical example was provided 

in Chapter 3 to demonstrate the procedure. In the example, the results of the designed 

controllers based on the VDNS strategy were better than those of the clipped optimal 

controllers. Furthermore, the VDNS algorithm only requires the measurements at the 

locations of control devices. Therefore, the control system can be designed decentralized. 

 

A 20-story linear benchmark building was used to evaluate the performance of the VDNS 

algorithm. An active control system using hydraulic actuators and a semi-active system 

using MR dampers were designed based on the VDNS algorithm. Both designed control 

systems were effective in reducing the seismic responses of the building, especially the 

relative displacements and interstory drifts. All the normed responses and the peak 

relative displacement and interstory drift were reduced by the control systems. The 

results of the semi-active system were comparable to those of the active control. In 

addition, the control systems were observed to be robust to the changes of the building’s 

properties. 

 

The biggest advantage of the VDNS algorithm is its simplicity. Firstly, the controller 

design process is simple. Only two control parameters are involved. The control 

parameters are selected to increase the structural damping, which is more intuitive to the 

designers. Secondly, the resulted control force is simple, which could reduce the 

calculation time of the processing units. Furthermore, the control system can be 

implemented decentralized. It eliminates the long cables between different floors, reduces 

the communication time and decreases the uncertainties in the communication. 
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Nevertheless, the VDNS also has some drawbacks. During the design of the control 

system, some assumptions are made to simplify the problem. For example, the effects of 

higher modes on the response of the buildings are not considered in the determination of 

control parameters. In addition, more sensors, control devices and processing units are 

needed for large scale buildings. 

 

5.1. Future Work 

 

Both centralized and decentralized approaches have pros and cons regarding robustness 

to failure. With a centralized controller, one can switch from a controller that uses full 

sensors to a controller that uses fewer sensors when a failure is detected. So it is could be 

robust with proper provisions. On the other hand, for the decentralized controller, the 

entire control system can be divided into multiple subsystems. If one subsystem fails, the 

other subsystems might be able to compensate accordingly, and help to avoid the failure 

of the whole system. The control system based on the VDNS algorithm can be 

implemented decentralized. It would be worthwhile to study the fault tolerance of the 

control system. 

 

The VDNS control strategy has been demonstrated effective in the numerical examples. 

It should also be studied experimentally. 

 

The buildings studied in this thesis were assumed to remain in the linear region, but 

buildings could become nonlinear in strong earthquakes. Methods of controlling the 

nonlinear buildings should be investigated. 

 

During the design of the VDNS controller, the information of the earthquake excitations 

are not required, i.e., the controller is designed to work for all earthquakes generally. 

Future investigation could analyze and compare the performances of the controller for 

different earthquakes. 
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